三角函數題
注意歸一公式、誘導公式的正確性(轉化成同名同角三角函數時,套用歸一公式、誘導公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導致錯誤!一著不慎,滿盤皆輸!)。
數列題
1.證明一個數列是等差(等比)數列時,最后下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2.最后一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設后,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3.證明不等式時,有時構造函數,利用函數單調性很簡單(所以要有構造函數的意識)。
立體幾何題
1.證明線面位置關系,一般不需要去建系,更簡單;
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;
3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關系(符號問題、鈍角、銳角問題)。
概率問題
1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2.搞清是什么概率模型,套用哪個公式;
3.記準均值、方差、標準差公式;
4.求概率時,正難則反(根據p1+p2+...+pn=1);
5.注意計數時利用列舉、樹圖等基本方法;
6.注意放回抽樣,不放回抽樣;
圓錐曲線問題
1.注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數法、待定系數法;
2.注意直線的設法(法1分有斜率,沒斜率;法2設x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;
3.戰術上整體思路要保7分,爭9分,想12分。
導數、極值、最值、不等式恒成立(或逆用求參)問題
1.先求函數的定義域,正確求出導數,特別是復合函數的導數,單調區間一般不能并,用“和”或“,”隔開(知函數求單調區間,不帶等號;知單調性,求參數范圍,帶等號);
2.注意最后一問有應用前面結論的意識;
3.注意分論討論的思想;
4.不等式問題有構造函數的意識;
1. 三角變換與三角函數的性質問題
(1)解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
(2)構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
2. 解三角形問題
(1)解題路線圖
① a 化簡變形;b 用余弦定理轉化為邊的關系;c 變形證明。
② a 用余弦定理表示角;b 用基本不等式求范圍;c 確定角的取值范圍。
(2)構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
3. 數列的通項、求和問題
(1)解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
(2)構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定方法:根據數列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
微信掃描二維碼關注
一、正整數的定義正整數,為大于0的整數,也是正數與整數的交集。正整數又可分為質數,1和合數。正整數可帶正號(+),也可以不帶。如:+1、+6、3、5,這些都是正整數。0既不是正整數,也不是負整數(0是整數)。二、
一、高考數學答題時間分配通常我們答卷的時候,老師都會告訴我們先易后難,我們在答高考試卷的時候也是這樣的,我們在拿到整張試卷的時候,一定要統攬一下試卷,做到心理有數,這樣我們在安排答題時間的時候才能更加
一、圓的切線性質定理圓的切線垂直于經過切點的半徑。推論1:經過圓心且垂直于切線的直線必經過切點。
一、高考數學答題時間分配通常我們答卷的時候,老師都會告訴我們先易后難,我們在答高考試卷的時候也是這樣的,我們在拿到整張試卷的時候,一定要統攬一下試卷,做到心理有數,這樣我們在安排答題時間的時候才能更加
一、高考數學答題技巧1、函數與方程思想函數思想是指使用運動變化的觀點,分析和研究數學中的數量關系,通過建立函數關系使用函數的圖像和性質去分析問題、轉化問題和解決問題;方程思想,是從問題的數量關系入手,
一、高中數學怎么答題背誦題型當然不能硬背,在實踐中,我們要通過反復訓練的方式,熟悉每一個題型的思路,最好的方式就是同一類題型反復做上10-20遍以上。否則根本記不住。在大量做題后,這些題型的解題思路,你想
一、高考數學選擇題規律有哪些數形結合法:就是把高考數學問題中的數量關系和空間圖形結合起來思考問題。數與型相互轉化,使問題化繁為簡,得以解決。
一、高考數學選擇題規律有哪些數形結合法:就是把高考數學問題中的數量關系和空間圖形結合起來思考問題。數與型相互轉化,使問題化繁為簡,得以解決。
一、等差數列求和公式介紹等差數列是常見數列的一種,可以用AP表示,如果一個數列從第二項起,每一項與它的前一項的差等于同一個常數,這個數列就叫做等差數列,而這個常數叫做等差數列的公差,公差常用字母d表示。